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Abstract Solving a problem requires a problem solving step (deriving, from the formu-
lation of the problem, the solution algorithm) and a computation step (running the algo-
rithm). The latter step is generally oblivious of the former. We unify the two steps into a
single physical interaction: a many body interaction in an idealized classical framework, a
measurement interaction in the quantum framework. The many body interaction is a useful
conceptual reference. The coordinates of the moving parts of a perfect machine are sub-
mitted to a relation representing problem-solution interdependence. Moving an “input” part
nondeterministically produces a solution through a many body interaction. The kinematics
and the statistics of this problem solving mechanism apply to quantum computation—once
the physical representation is extended to the oracle that produces the problem. Configura-
tion space is replaced by phase space. The relation between the coordinates of the machine
parts now applies to a set of variables representing the populations of the qubits of a quan-
tum register during reduction. The many body interaction is replaced by the measurement
interaction, which changes the population variables from the values before to the values af-
ter measurement (and the forward evolution into the backward evolution, the same unitary
transformation but ending with the state after measurement). Quantum computation is re-
duction on the solution of the problem under the problem-solution interdependence relation.

The speed up is explained by a simple consideration of time-symmetry, it is the gain of
information about the solution due to backdating, to before running the algorithm, a time-
symmetric part of the reduction on the solution. This advanced cognition of the solution
reduces the solution space to be explored by the algorithm. The quantum algorithm takes the
time taken by a classical algorithm that knows in advance 50% of the information acquired
by reading the solution (i.e. by measuring the content of the computer register at the end of
the quantum algorithm).

From another standpoint, the notion that a computation process is condensed into a single
physical interaction explains the fact that we perceive many things at the same time in the
introspective “present” (the instant of the interaction in the classical case, the time interval
spanned by backdated reduction in the quantum case).
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1 Introduction

Solving a problem requires two steps. A problem solving step (deriving, from the formula-
tion of the problem, the solution algorithm) and a computation step (running the algorithm).
The latter step is generally oblivious of the former. We unify the two steps into a single
physical interaction, as follows:

1. For the conventional representation of computation, we adopt the so called “circuit
model”. At the logical level, a set of Boolean variables (representing the computer reg-
ister) undergoes a sequence of elementary reversible/deterministic input output transfor-
mations, changing input values into output values. Through this sequence, an overall
input is transformed into an overall output representing the solution of the problem. The
sequence can be represented as a linear Boolean network, a series of reversible Boolean
gates with no feedback loops and no preassigned values on the outputs, where the in-
put logically propagates to the output in a deterministic way. At the physical level, a
computer register undergoes a sequence of deterministic transformations (corresponding
to the logical ones) that change input states of the register into output states until the
overall output is reached. Reading the register content in the overall output state yields
the solution of the problem. These features are common to classical computation and to
the unitary evolution stage of quantum computation. This representation of computation
is oblivious of the problem (in the quantum algorithms, of the oracle that produces the
problem), an omission that makes the speed up conceptually unexplained.

2. Computation is unified with problem solving as follows. We consider the non-linear
Boolean network representing the original problem, to be distinguished from the above
said linear network, which represents the algorithm that solves the problem. The nonlin-
ear network is generally exponentially smaller, has logically irreversible gates or partial
gates, feedback loops (outputs feeding back into inputs), and outputs with preassigned
values. Solving this network means finding a Boolean assignment that satisfies all net-
work elements (gates, wires, preassigned Boolean values). In general the non linear net-
work is not directly solvable by the deterministic propagation of an input into an output;
it is transformed into an exponentially larger linear network (representing the solution
algorithm), solvable by this kind of propagation. Here we proceed in a different way,
identifying a physical interaction that directly produces the solutions of the nonlinear
network. We replace the Boolean variables xi of the nonlinear network by ratios between
real non-negative variables Xi/Q, the network constraints by equations on these ratios.
For Q > 0, the solutions of this system of equations correspond to the solutions of the
nonlinear Boolean network. The relation between variables (the ratios) established by the
system of equations represents problem-solution interdependence. We provide two ways
of physically producing the solutions of the system of equations: by a classical many
body interaction and by a quantum measurement interaction. The many body interaction
is inspired to a well known paradox of classical mechanics. Statically, the application
of external forces to a perfectly rigid body is balanced by infinitely many distributions
of stress inside the body, against one distribution if the body is flexible. This paradox is
ported to a perfectly rigid body made of moving parts, whose coordinates Xi and Q are
submitted to mechanical constraints representing the system of equations. In the initial
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configuration all coordinates are zero. By applying a force to the input part of coordi-
nate Q, the many distributions of stress inside the body, find a combination of move-
ments of the machine parts that satisfies all the constraints at the same time. In more
detail, pushing the input part from Q = 0 to Q > 0, brings in the many body problem,
the non-determination of the dynamics. By applying the principle of sufficient reason,
we postulate a many body interaction that produces a solution of the problem with prob-
ability proportional to the mass of the machine parts moved to produce that solution. The
kinematics and the statistics of this idealized classical interaction can represent a quan-
tum measurement interaction. The “coordinates” of the machine parts Xi/Q are replaced
by a set of variables representing the populations of (the reduced density operators of) the
qubits of a quantum register immediately before and after measurement. The measure-
ment interaction changes these population variables from the values immediately before
to the values immediately after measurement. The problem-solution interdependence re-
lation linearly extends to an infinite set of variables representing the amplitudes of the
computational basis vectors throughout the quantum process. Under the extended rela-
tion, the measurement interaction changes the forward evolution (the unitary evolution
ending with the state before measurement) into the backward evolution (the same unitary
transformation but ending with the state after measurement). In this “relational” represen-
tation, quantum computation is reduction on the solution under the relation representing
problem-solution interdependence.

3. Applied to the quantum algorithms, this representation of problem solving and computa-
tion (for short, computation from now on) provides a unified explanation of the speed up.
In the first place, the physical representation of computation must be extended to com-
prise the oracle that produces the problem. Then any known quantum algorithm becomes
reduction on the solution under the relation representing problem-solution interdepen-
dence. The quantum speed up is explained by a simple consideration of time-symmetry.
It is the gain of information about the solution of the problem due to backdating, to be-
fore running the algorithm, a time-symmetric part of the reduction on the solution. This
advanced cognition of the solution1 reduces the size of the solution space to be explored
by the algorithm. The quantum algorithm takes the time taken by a classical algorithm
that knows in advance 50% of the information acquired by reading the solution (i.e. by
measuring the content of the computer register at the end of the quantum algorithm).
This is verified for the algorithms of Deutsch, Grover, and Simon (also in the case of the
generalized Simon’s problem, thus for the hidden subgroup problems), namely for both
quadratic and exponential speed ups.

4. Nondeterminism is here a fundamental feature of computation, it is not loosing track of
a propagation spreading through too many degrees of freedom. It is capability of making
choices satisfying many (like in many body) constraints at the same time.

5. At least in the idealized classical analogy, nondeterminism goes along with reversibility.
The machine motion is reversible (dissipationless), but not invertible. Inverting the di-
rection of motion might not lead to run the same trajectory in the opposite way, it can
change the trajectory (in occasion of the many body interaction).

6. The notion that an entire problem solving and computation process can be condensed
into a single interaction (an idealized classical many body interaction or a quantum mea-
surement interaction) can also explain the unity of perception, the fact that we perceive
(assumedly, process) so many things together at the same time in the so called “present”.

1We have chosen the term “advanced” because it is reminiscent of the “advanced wave”, going backward in
time, of Cramer’s transactional interpretation of quantum mechanics.



860 Int J Theor Phys (2009) 48: 857–873

Tacking into account many constraints at the same time is exactly what a classical many
body interaction, or a quantum measurement interaction, does. The physical representa-
tion of the introspective notion of “present” is the instant of the interaction in the classical
case, the time interval spanned by backdated reduction in the quantum case.

2 The Notion of Perfect Relation in Classical and Quantum Physics

The idea that many things are processed all together at the same time, standing at the basis of
relational computation, is formalized by resorting to a notion of the Gestalt theory (e.g. [18]).
The wholeness/unity of a physical situation implies that there is a relation—a “simultaneous
dependence” in the language of the theory—between all the quantitative variables describing
it.

An example of such a relation in classical physics is “force equal mass times accelera-
tion” in the case of a point mass. In view of what will follow, it should be noted that this
relation is implicitly assumed to be objectively perfect. If we see it as a mechanism, whose
degrees of freedom are the variables related by the law, this mechanism should be perfectly
accurate, rigid, and reversible—it is not the case that Newton’s second law gets deformed
because of flexibility or jams because of friction or irregularities.

Another important feature of the relations that we find in Nature, is that they can be
nonfunctional, which is also the case of Newton’s law. The change of any one variable
is correlated with an identical change of the product or ratio of the other two variables
but does not determine their individual changes. Correspondingly, Newton’s law can host
nondeterminism in the form of the many body problem.

The requirement that the relation representing problem-solution interdependence is per-
fect, is essential in the case of the classical many body interaction, it is absorbed into the
quantum principle and the notion of qubit [10] in the case of the measurement interaction.
That infinite classical precision can be dispensed for because of quantization has already
been noted by Finkelstein [11].

3 Relational Computation in the Classical Framework

We postulate a many body interaction inspired to a well known paradox of classical me-
chanics: statically, the application of external forces to a perfectly rigid body is balanced by
infinitely many distributions of stress inside the body, against one distribution if the body
is flexible. This paradox is ported to a perfectly rigid body made of moving parts, whose
coordinates are submitted to mechanical constraints representing the problem. By applying
a force to an input part, the many distributions of stress inside the body find a combination
of movements of the body’s parts that satisfies all the constraints at the same time.

It is interesting to note that giving up the limitation to two body interaction marks the
departure from classical computation. The fundamental physical model of classical com-
putation is the bouncing ball model of reversible computation [12]. The variables at stake
are ball positions and momenta. Outside collisions, there is no simultaneous dependence
between the variables of different balls, which are independent of each other. During col-
lision, there is simultaneous dependence between the variables of the colliding balls, but
this is confined to ball pairs (there can be several collisions at the same time, but involving
independent ball pairs, with no simultaneous dependence between the variables of different
pairs). The simultaneous collision between many balls is avoided to avoid the many body
problem, the non-determination of the dynamics.
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Instead, by assuming a perfect simultaneous dependence between all computational vari-
ables, one can devise an idealized classical machine that, thanks to a many body interac-
tion, nondeterministically produces the solution of a (either linear or non linear) system of
Boolean equations under the simultaneous influence of all equations.

Let us start with the simple problem of finding the solutions (x = 0, y = 1 and x = 1,
y = 0) of the single Boolean equation y = x. The problem solving/computation mechanism
that produces these solutions can easily be extended to any system of Boolean equations.
Let Q, X, and Y be real non negative variables. The Boolean problem is transformed into
the problem of finding the solutions, for Q > 0, of the system of equations

Q = X + Y, (1)

Q2 = X2 + Y 2. (2)

Q = 0 implies X = Y = 0, while X
Q

and Y
Q

are undetermined. When Q > 0, X
Q

coincides

with the Boolean variable x and Y
Q

with y = x. Equations (1) and (2), representing the
problem constraint y = x, establish a nonfunctional relation, a simultaneous dependence,
between the variables Q, X, and Y . The solutions are produced under this relation by a many
body interaction as follows. We put a differential gear between coordinate Q (the input of
the gear) and coordinates X and Y (the two outputs of the gear), which implements (1). We
put another differential gear between the squares of these coordinates, namely between the
auxiliary coordinates Q′, X′, and Y ′ connected through parabolic cams to Q, X, and Y , so
that Q′ = Q2, X′ = X2, and Y ′ = Y 2, which implements (2).

The initial machine configuration is Q = X = Y = 0; it can be argued that any motion of
the part of coordinate Q from Q = 0 to Q > 0 instantly produces a solution in a nondeter-
ministic way, as follows. The many body problem is the problem of the non-determination
of the dynamics in the case of perfect coincidence between interaction times of many bodies
– which is the case if we try and push part Q out of Q = 0. Here we postulate a solution to
the many body problem by applying the principle of sufficient reason. The motion of part
Q could be obtained by applying a force to it. In fact, there is no reason for either X or Y ,
in a mutually exclusive way, not to move with Q, since either movement offers zero static
resistance to the force—there is only the inertia of the machine parts.

By playing with inertia, we can also tune the probabilities that X and Y move. We require
that, on average (over an ensemble of repetitions of the interaction), there is equipartition
of energy among the machine degrees of freedom. Since the force applied to part Q works
against the inertia of all the parts that move with Q, this implies that the probability of each
solution is proportional to the mass of the parts that move to produce that solution (either Q

and X or Q and Y ). Under this assumption, and by assuming for example even masses for
X and Y , the values of the coordinate ratios change from X

Q
= Y

Q
= 1

2 before interaction to
X
Q

= 1 and Y
Q

= 0 or (in a mutually exclusive way) X
Q

= 0 and Y
Q

= 1 after interaction.
We should note that, unlike deterministic reversible processes, the present process is not

invertible. For example, we can think of connecting the input part to an ideal spring charged
when Q = 0. On the one side, there would be oscillations without dissipation. On the other,
at each oscillation, the movement of the input part from Q = 0 to Q > 0 would randomly
drag either X or Y in a mutually exclusive way.

This computation mechanism is easily extended to solve any system of Boolean equa-
tions, namely (without loss of generality) a network of n partial OR gates POR(xi,1, xi,2,

xi,3) = 1 (i = 1, . . . , n) and m wires xi,j = xh,k (for m assignments of i, j, h, k). The truth
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table of the partial OR gate i is given in the right side of table (3).

part xi,1 xi,2 xi,3

Xi,1 0 1 1

Xi,2 1 0 1

Xi,3 1 1 0

(3)

The problem solving machine for this network is defined as follows. For all i, each row
j (j = 1,2,3) of the truth table is associated with a mechanical part of coordinate Xi,j

(table 3)—we also say that part Xi,j is labelled by the values of the Boolean variables
xi,1, xi,2, xi,3 appearing in the corresponding row. Q and Q2 (with a parabolic cam in be-
tween) are now the inputs of n pairs of differential gears, one linear and the other nonlinear,
as before. This time, each linear gear i has three outputs of coordinates Xi,j (j = 1,2,3),
each nonlinear gears their squares (with parabolic cams in between), so that, for all i:
Q = ∑3

j=1 Xi,j and Q2 = ∑3
j=1 X2

i,j . Therefore, the motions of the parts of each triplet
(Xi,1, Xi,2, Xi,3) are mutually exclusive with one another. If part Xi,j moves with Q, we
understand that xi,1, xi,2, xi,3 assume the values appearing in the corresponding row.

This is justified by the following implementation of the wires. For example, let us assume
that xi,1 = xh,2, which means either xi,1 = xh,2 = 0 or xi,1 = xh,2 = 1. Looking at table (3),
one can see that this wire must be represented by the equations Xi,1 = Xh,2 and Xi,2 +Xi,3 =
Xh,1 + Xh,3. In fact, if the part that moves in the first triplet is Xi,1, this implies xi,1 = 0 (see
the intersection between first row and first column of table (3)). Then, to satisfy the wire,
the part that moves in the second triplet must be Xh,2, so that also xh,2 = 0 (intersection
between second row and second column of table (3)—having replaced the subfix i by h).
This justifies the first equation. If instead the part that moves in the first triplet is either Xi,2

or Xi,3, this implies xi,1 = 1 (intersection between second or third row and first column).
Then, to satisfy the wire, the part that moves in the second triplet must be either Xh,1 or
Xh,3, so that also xh,2 = 1 (intersection between first or third row and second column). This
justifies the second equation. In general, we require that the sums

∑
j Xi,j , with j running

over the labels with the same value of the same Boolean variable, are conserved across
different triplets (e.g. we understand that xi,1 = xh,2 and xh,2 are the same Boolean variable
in triplets i and h). These linear equations (representing the wires) are implemented by
systems of gears between the parts involved.

At this point the thought machine is completed. By applying a force to the input part Q,
the machine’s motion from Q = 0 to Q > 0 produces a solution2 under the simultaneous
influence of all the problem constraints: in each triplet, there is only one part that moves, the
labels of all the parts that move make up a Boolean assignment that solves the network.

We should note that this form of computation is essentially different from the causal
propagation of an input into an output. For example, it can produce two inputs such that
their product is a preassigned output (the nonlinear Boolean network for this problem is
the network for the multiplication of two integer numbers, with a preassigned value on the
output). If this were an input-output propagation (which is not), one should say that inputs
are produced with advanced cognition of the output.

2Provided that there is one, otherwise the machine is jammed.
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4 Relational Computation in the Quantum Framework

The kinematics and the statistics of the idealized classical many body interaction can apply,
as it is, to a realistic quantum computation. Considering the previous example y = x, the
motion from Q = 0 to Q > 0 is analogous to measuring two qubits X and Y in the entangled
state |0〉X|1〉Y + eiδ|1〉X|0〉Y , where δ is an arbitrary (even random) phase. The configuration
space of the classical machine becomes the phase space of a quantum register, the relation
between the coordinates of the machine parts (the ratios X

Q
, Y

Q
) now applies to a set of

variables representing the populations of (the reduced density operators of) the qubits of
a quantum register during the measurement interaction (immediately before, during, and
immediately after measurement). The correspondence between coordinates and populations
is:

X

Q
= x00 = 1 − x11,

Y

Q
= y00 = 1 − y11, (4)

where x00 is the variable representing the population of qubit |0〉X〈0|X during reduction,
etc. Under this correspondence, the problem-solution interdependence relation is the same
as before:

Q = X + Y, (5)

Q2 = X2 + Y 2. (6)

In the transition from Q = 0 to Q > 0, the population variables change from the values
before reduction x00 = x11 = y00 = y11 = 1

2 to the values after reduction, one of the two
mutually exclusive sets of values x00 = 0, x11 = 1, y00 = 1, y11 = 0 and x00 = 1, x11 = 0,
y00 = 0, y11 = 1.

It should be noted that simultaneous dependence (functionally) extends to the amplitudes
of all the basis vectors throughout the unitary evolution stage of the quantum process—for
example the process of entangling X and Y starting from a sharp preparation, say |0〉X|0〉Y .
Let |ψ, t〉 = ∑

i αi(t)|i〉, be the state of the quantum system at time t between preparation
and measurement, where |i〉 is the i-th computational basis vector. At any time t , any am-
plitude αi(t) is a function of the population variables at the time of reduction:

∀t : αi(t) = fi(x00, x11, y00, y11, t). (7)

Under the infinite system of (4), (5), (6), and (7), reduction changes the forward evolution
into the backward evolution. This is only an alternative way of representing a quantum
process, suited to the present context.

It should be noted that, under (7), any two amplitudes αi(t1) and αj (t2), with t1 ≤ t2, also
depend from one another in a time symmetric way. In other words, it is not the case that
the change (from the forward to the backward value) of the amplitude at time t1 causes the
change of the amplitude at the later time t2; causality is mutual, like in the measurement of
two entangled polarizations.

5 Relational Computation and the Quantum Algorithms

We apply relational computation to the representation of the quantum algorithms. We shall
consider only the input and the output of the unitary transformation performed by the quan-
tum algorithm, therefore no previous knowledge of the subject is required to the reader. For
a complete description of the quantum algorithms, in the same notation used here, see [16].
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5.1 Grover’s algorithm

The problem addressed by Grover’s algorithm [13] is database search. It can be seen as a
game between two players with a chest of N drawers; the first player (the oracle) hides a
ball in drawer number k. The second player must find where the ball is. Opening drawer x to
check whether the ball is in it amounts to computing the Kroneker function δ(k, x), which is
1 if k = x and 0 otherwise. Here k ∈ {0,1}n, where n = log2 N (for simplicity, let us assume
that N is a power of 2).

The value of k chosen by the first player is hardwired inside a black box that, for each
input x, computes δ(k, x). The second player has to find the value of k by computing δ(k, x)

for different values of x. In the classical case, to find the value of k, δ(k, x) must be com-
puted the order of N times, in the quantum case the order of

√
N times—there is a quadratic

speed up.
In the latter case, instead of trying a single value of x, the second player prepares an

n-qubit register X in an even superposition of all the possible values of x, and computes
δ(k, x) in quantum parallelism. For example, with N = 4 and k = 01, the algorithm unitarily
changes the input state

1

2
√

2
(|00〉X + |01〉X + |10〉X + |11〉X)(|0〉V − |1〉V ), (8)

into the output state

1√
2
|01〉X(|0〉V − |1〉V ). (9)

In the present case (N = 4), this is obtained by computing δ(k, x) only once. Measuring
the content of register X in (9) yields the solution. The quantum network implementing this
transformation, as well as the function of register V , can be disregarded here.

Thus, in the original algorithm, the solution is obtained in a deterministic way (for sim-
plicity, we put ourselves in those values of N where the probability of error of Grover’s
algorithm is zero); relational computation, namely reduction on the solution of the problem
under problem-solution interdependence, is completely hidden. However, the random gen-
eration of k is not represented physically. We extend the physical representation by adding
an ancillary n-qubit register K prepared in a superposition of all the values of k. The ex-
tended algorithm repeatedly computes δ(k, x) as before but now for a superposition of all
the combinations of values of k and x. Now the input state is:

1

4
√

2
(|00〉K + |01〉K + |10〉K + |11〉K)

× (|00〉X + |01〉X + |10〉X + |11〉X)(|0〉V − |1〉V ), (10)

where the superposition hosted in register K can indifferently be coherent or incoherent (in
which case each element of the superposition should be multiplied by a random phase). The
extended algorithm unitarily transforms the input state (10) into the output state:

1

2
√

2
(|00〉K |00〉X + |01〉K |01〉X + |10〉K |10〉X + |11〉K |11〉X)(|0〉V − |1〉V ), (11)

where each value of k is entangled with the corresponding solution found by the second
player (the same value of k but in register X). The final measurement of the contents of
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registers K and X in state (11) determines the moves of both players. The reduction induced
by measuring the content of register K , backdated to before running the algorithm, yields
the original Grover’s algorithm. We find reduction on the solution of the problem under
problem-solution interdependence.

The nondeterministic production of the contents of the two registers by quantum mea-
surement, can be seen as mutual determination between such contents, like in the measure-
ment of two entangled polarizations. This justifies the square root speed up, as follows. We
cannot say that reading the content of K at the end of the algorithm determines the con-
tent of X, namely that choosing the drawer to hide the ball in determines the drawer the
ball is found in—this would be the classical game with no mutual determination. For the
same reason we cannot say that reading the content of X determines the content of K , that
looking inside a drawer at the end of the algorithm creates the ball in it. Mutual determina-
tion is symmetrical, it should be represented by saying that the contents of the two registers
are determined by reading the first (second) bit of register K and the second (first) bit of
register X.

Then Grover’s algorithm is equivalent to the following game. We arrange the N drawers
in a matrix of

√
N columns and

√
N rows. At the end of the algorithm, the first player de-

termines (say) the row by reading the first bit of register K . The second player determines
the column by reading the second bit of register X, say that this reading is 1. The reduction
induced by the second player, backdated to before running the algorithm, changes the initial
preparation of register K , 1

2 (|00〉K + |01〉K + |10〉K + |11〉K) (10), into 1√
2
(|01〉K + |11〉K),

thus determining the column before running the algorithm. In this picture, Grover’s algo-
rithm searches just the row randomly chosen by the first player, which justifies the

√
N

computations of δ(k, x)—the quadratic speed up. Grover’s algorithm is equivalent to a clas-
sical search in a database of size

√
N (we should symmetrize for the exchange of columns

and rows). See also [2, 6, 7].
The same justification holds in the case that the value of k is already determined before

running the algorithm, like in virtual database search. This case is indistinguishable from
the random generation of k at the end of the algorithm, where backdating reduction makes
k predetermined.

If we think that k is predetermined, the initial superposition in register K— 1
2 (|00〉K +

|01〉K + |10〉K + |11〉K)—represents the initial ignorance of the value of k on the part of the
second player. Its reduction to 1√

2
(|01〉K + |11〉K), due to the second player reading 1 in the

second bit of register X at the end of the algorithm, gives—before running the algorithm—an
information gain of one bit. This is 50% of the information acquired by reading the solution,
namely the two bits of register either K or X (the information content of one register is
redundant with respect to the content of other register), or one bit of K and the other bit
of X.

For a database of size N , the reduction of ignorance about the solution due to backdating,
to before running the algorithm, 50% of the information acquired by reading the solution,
is:

�S = 1

2
lg2 N. (12)

Summing up, in the relational representation:

1. Quantum computation is reduction on the solution of the problem under the relation
representing problem-solution interdependence.

2. The speed up is the reduction of the initial ignorance of the solution due to backdating,
to before running the algorithm, a time-symmetric part of the reduction on the solution,
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namely 50% of the information acquired by reading the solution. This advanced cogni-
tion of the solution reduces the size of the solution space to be explored by the algorithm.

3. The quantum algorithm takes the time taken by a classical algorithm (the reference clas-
sical algorithm) that knows in advance 50% of the information acquired by reading the
solution (i.e. by measuring the content of the computer register at the end of the quantum
algorithm).

In the present case of Grover’s algorithm, backdating 50% of the information about the
database location, reduces the size of the solution space (of the database) from N to

√
N .

The quantum algorithm working on a database of size N takes the time taken by a classical
algorithm working on a database of size

√
N . See also [3–5]. We should note that the formu-

lation of point 3 is independent of the relational representation of computation. Therefore
Point 3, besides being theoretically justified within the relational representation of computa-
tion, can be seen as an empirical fact that holds for all quantum algorithms (as clarified here
below).

We should note that, in the present context, reduction is on both the problem (the oracle’s
random choice) and the solution. Therefore, “reduction on the solution of the problem”
should be understood as reduction on the solution and the problem. Correspondingly, the
information acquired by reading the solution of the problem is the information acquired
by reading the solution and the problem. This, in Grover’s algorithm, coincides with the
information acquired by reading either one, since either one is a function of the other.

5.2 Deutsch’s Algorithm

We consider the revisitation of Deutsch algorithm [9] due to [8]. Now the oracle chooses at
random one of the four binary functions fk : {0,1} → {0,1} (k is a two-bit string belonging
to {0,1}2); these four functions are reported in table (13)

x f00(x) f01(x) f10(x) f11(x)

0 0 0 1 1

1 0 1 0 1

. (13)

Then the oracle gives to the second player the black box hardwired for the computation of
that function. The second player, by trying function evaluation for different values of x, must
find out whether the function is balanced (i.e. f01 or f10, with an even number of zeroes and
ones) or constant (i.e. f00 or f11). This requires two function evaluations in the classical
case, just one in the quantum case.

In the conventional quantum algorithm, the second player prepares two one-qubit regis-
ters X and V in the input state

1

2
(|0〉X + |1〉X)(|0〉V − |1〉V ). (14)

With just one function evaluation, the algorithm unitarily produces the output state

1√
2
|0〉X(|0〉V − |1〉V ) (15)

if the function is constant and

1√
2
|1〉X(|0〉V − |1〉V ) (16)
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if the function is balanced. Thus, at the end of the algorithm, register X contains the solution
of the problem. The speed up is obtained in a deterministic way, but also in this case the ran-
dom generation of k is not represented physically. We extend the physical representation by
adding an ancillary two-qubit register K prepared in a superposition (indifferently coherent
or incoherent) of all the possible valuations of k. The input state is now:

1

4
(|00〉K + |01〉K + |10〉K + |11〉K)(|0〉X + |1〉X)(|0〉V − |1〉V ). (17)

Now the extended algorithm, given the inputs k and x, computes f (k, x) ≡ fk(x), yield-
ing the output:

1

2
√

2
[(|00〉K + |11〉K)|0〉X + (|01〉K + |10〉K)|1〉X)](|0〉V − |1〉V ). (18)

The measurement of the content of registers K and X in the output state determines the
moves of both players, as before. The information acquired by reading the contents of reg-
isters K and X is 2 bits (the two bits that specify the choice of the first player, the answer
of the second player is a function of that choice—which makes the information contained
in register X redundant). The information gain due to backdating 50% of the information
acquired by reading the content of the two registers is then �S = 1 bit. The quantum algo-
rithm takes the time taken by a classical algorithm working on a solution space reduced in
size because one bit of information about the solution—namely the value of either fk(0) or
fk(1)—is known in advance. This algorithm must acquire the other bit of information by
computing either fk(1) or fk(0). Thus the reference classical algorithm performs just one
function evaluation like the quantum algorithm. This verifies point 3.

5.3 Simon’s Algorithm

A first player (the oracle) chooses at random a function among the set of the “periodic” func-
tions fk : {0,1}n → S, with S ⊆ {0,1}n. The “periodic” function fk, where k =k1, . . . , kn is
a string of Boolean values (excluding the all zeroes string), is such that fk(x) = fk(y) if and
only if x = y or x = y⊕k. Here x and y are variables belonging to {0,1}n and ⊕ denotes
bitwise addition modulo 2 (see the following example). Then he gives to the second player a
black box that, given an input x, computes fk(x). The second player should find the hidden
string k through function evaluation.

Let us exemplify. With n = 2 and S = {0,1}, there are three “periodic” functions (up to
permutation of function values leaving the hidden string unaltered):

x f01(x) f10(x) f11(x)

00 0 0 0

01 0 1 1

10 1 0 1

11 1 1 0

. (19)
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The first player chooses at random a hidden string k, among the 2n − 1 possible hidden
strings (here 01, 10, and 11), and delivers to the second player the corresponding black box.
In order to find k, the second player must perform function evaluation the order of 2n/3 times
in the classical case, the order of n times in the quantum case [21]—there is an exponential
speed up.

The original Simon’s algorithm is as follows. The second player prepares an n-qubit
register X in an even weighted superposition of all the possible values of x, and an m-qubit
register F (devoted to contain the result of function evaluation: m ≤ n) in a sharp state. The
input state of the algorithm is thus:

1

2
(|00〉X + |01〉X + |10〉X + |11〉X)|0〉F . (20)

Then he performs function evaluation on the superposition of all the possible values of x,
obtaining the intermediate output (say that k = 10, see f10(x) in table (19)):

1

2
[(|00〉X + |10〉X)|0〉F + (|01〉X + |11〉X)]|1〉F . (21)

Now he applies the Hadamard transform (still a unitary transformation) to the state of regis-
ter X, obtaining the overall output:

1

2
[(|00〉X + |01〉X)|0〉F + (|00〉X − |01〉X)]|1〉F . (22)

In the overall output state, for each value of the function, register X hosts an even weighted
superposition of the 2n−1 strings hj = hj1hj2 · · ·hjn orthogonal to k—such that, for all j ,
(
∑n

i=1 hjikji) modulo 2 = 0; in the example, h1 ≡ 00 and h2 ≡ 01 are the two strings or-
thogonal to k ≡10. Note that only the phase of the even weighted amplitudes depend on the
value of fk(x). Therefore, by measuring the content of X in (22), one obtains at random
one of the hj . The entire process (initial preparation of registers X and F , unitary transfor-
mation, and measurement of the content of X) is iterated until obtaining n − 1 different hj ,
which allows to find k by solving a system of n − 1 modulo 2 linear equations.

This formulation of Simon’s algorithm leaves the number of iterations of the algorithm
unbounded. Alternatively, we can iterate the algorithm a fixed number of times, which leaves
a certain probability of failing to find the solution. If the algorithm is iterated, say, 6n times,
the probability of obtaining n − 1 different hj , thus of finding the solution, is about 8

9
(e.g. [16]). The computation time taken by the 6n-iterations Simon’s algorithm, in terms
of number of elementary logical operations, is the order of n3.

Now we extend Simon’s algorithm to represent the random choice of the hidden string on
the part of the oracle. We add an auxiliary n-qubit register K , prepared in an even weighted
superposition of the 2n − 1 possible valuations of k. The black box that (given input x)
computed fk(x) for a specific k, is now replaced by a black box that, given the inputs k
and x, computes f (k, x) ≡ fk(x). The input state is now:

1

2
√

3
(|01〉K + |10〉K + |11〉K)(|00〉X + |01〉X + |10〉X + |11〉X)|0〉F , (23)
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where the superposition hosted in register K is indifferently coherent or incoherent. The
overall output state (22) becomes now:

+1

2
|01〉K [(|00〉X + |10〉X)|0〉F + (|00〉X − |10〉X)|1〉F ]

+ 1

2
|10〉K [(|00〉X + |01〉X)|0〉F + (|00〉X − |01〉X)|1〉F ]

+ 1

2
|11〉K [(|00〉X + |11〉X)|0〉F + (|00〉X − |11〉X)|1〉F ]. (24)

The first player measures the content of register K in (24), obtaining a state of the form (22).
The second player measures the content of register X (thus collecting the first of the hj ) then,
leaving register K in its sharp state and working only on registers X and F , iterates up to a
total of 6n times the original Simon’s algorithm (thus collecting the other 6n − 1 valuations
of hj ).

In the case that the algorithm finds the solution (with probability 8
9 ), there is mutual de-

termination between the content of register K and the content of register X in each of its 6n

measurements. In more detail: measuring the content of K projects the state of register K

on a single valuation of k; which valuation of k is the result of mutual causality between
measuring the content of K and the successive measurements of the content of X. This
is completely similar to measuring the polarizations of two photons in an entangled polar-
ization state; the polarization measured first is the result of mutual causality between this
measurement and the successive measurement of the second polarization; it is not the case
that the first result determines the second, nor that the second determines the first, causality
is mutual.

Now, backdating 50% of the information acquired by reading the content of register X

(50% of 6n readings), reduces the size of the problem not with certainty (like in the case of
Grover’s and Deutsch’s algorithms) but with probability 2

3 —the probability of finding the

hidden string with 3n readings ( 2
3 = 1 −

√
1 − 8

9 ). Moreover, with this probability, the
size of the problem is reduced from 2n − 1 to 1.

The fact that the reference classical algorithm finds the solution implies that the quantum
algorithm (whose hj comprise those of the reference algorithm) also finds the solution:
2
3 is thus the probability that both the quantum algorithm and the reference algorithm find
the solution. Point 3, the fact that the quantum algorithm takes the time taken by a reference
classical algorithm that knows in advance 50% of the information about the solution, applies
in a probabilistic way. With probability 2

3 , we put ourselves in the case that both the quantum
and the reference algorithm find the solution (the 1

3 probability that this is not the case,
goes down exponentially fast with the number of iterations of the quantum algorithm, it is
≈ ( 1

3 )g with 6gn iterations). In this case, the reference algorithm has simply to sort out n−1
different valuations of hj and solve the related system of n − 1 modulo 2 linear equations.
Thus, the quantum algorithm takes a time the order of n3, the reference algorithm the order
of n2, not so different in comparison with the order of e

n
3 taken by classical computation.

Perhaps a more accurate way of comparing classical computation and the reference al-
gorithm is to say that:

4. Classical computation has to find the hidden string by solving a system of nonlinear equa-
tions in n variables, the reference classical algorithm—thanks to the advanced cognition
of 50% of the solution—a system of linear equations in the same order of variables (here
n − 1 variables).
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The fact that points 1, 2, 3, and 4 hold for Simon’s algorithm implies that they hold for
a larger class of problems, because of the similarity between the generalized Simon’s prob-
lem (essentially solved by Simon’s algorithm) and the hidden subgroup problems [17]—like
finding orders, finding the period of a function (the quantum part of Shor’s factorization
algorithm), finding discrete logarithms, etc. [16]. In all cases, utilizing 50% of the infor-
mation acquired by reading the solution, reduces the probability of finding the solution by
an amount that goes exponentially to zero with the number of iterations of the quantum
algorithm. Point 4 holds replacing “hidden string “ by “hidden subgroup”.

6 Relational Computation and the Unity of Perception

For wholeness of perception, as it appears in introspective analysis, I mean the following.
For example, in this moment, I see the room in which I am working, an armchair, the win-
dow, the garden, and the Mediterranean Sea on the background. In my visual perception,
besides some aspects that are addressed by artificial intelligence, like the recognition of pat-
terns, there is another thing that should be addressed by a physical information theory, the
both obvious and striking fact that I see so many things together at the same time. What
I see is close to a digital picture whose specification would require a significant amount
of information. And, apparently, we can perceive a significant amount of information si-
multaneously all together, in the so called “present”. Another example is our capability of
grasping the solution of a problem. Reasonably, when we grasp the solution, we should take
into account at the same time the statement of the problem, the solution, and the logical
connection in between.

In the assumption that perception is information processing, perceiving many things at
the same time poses the question: what form of computation can process many things at the
same time in the so called “present”, and what is the physical counterpart of the introspective
notion of “present”, such that an entire computation process can occur in it? The mechanism
of relational computation can provide an answer.

In the idealized classical case, an entire computation process is condensed into an in-
stantaneous many body interaction. The physical counterpart of the introspective notion of
“present” is here the instant of the interaction.

In the quantum case, a state can hold any amount of information, which is processed
“at the same time” by the sequence: preparation, unitary transformation, and measurement.
“At the same time” since there is simultaneous dependence between all the amplitudes of
the computational basis vectors at any pair of times along the process (the change of one
amplitude, from the forward to the backward value, changes the other and vice-versa, in
a time symmetric way). Correspondingly the measurement interaction changes the entire
forward evolution into the backward evolution. The physical counterpart of the notion of
“present” is the time interval spanned by backdated reduction.

The observation that, in visual perception, we take into account many things at the same
time acquires a literal meaning. Taking into account many things at the same time is ex-
actly what many body interaction, or reduction of the forward evolution on the backward
evolution, does.

By the way, if the physical basis of consciousness is a nondeterministic problem solv-
ing mechanism, consciousness could not be the passive witness of a deterministic classical
process. Moreover, the deterministic, two-body character of classical computation prevents
taking into account many (so to speak, more than two) things at the same time, or (reason-
ably) hosting consciousness either.
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By showing that the quantum speed up is advanced cognition of the solution, the present
model might provide some theoretical ground to the psychological notion of premonition.
For the possibility that consciousness interacts with systems displaced in time up to 500 mil-
liseconds in the past and from milliseconds to months into the future, see [20].

The present identification between the notions of simultaneous dependence, physical law,
and perception has a precedent in Plato’s notion of Form (the Greek word Eidos translates
into Form, Idea, or Vision). In Phaedo: “Ideas are objective perfections that exist in them-
selves and for themselves, at the same time they are the cause of natural phenomena, they
keep phenomena bound together and constitute their unity” [1]. The Ideas of our mind are
clearly identified with physical laws; as well known, Platonic Ideas are also perfect mathe-
matical objects. The usual Platonist interpretation of this ambivalence is that the mind can
access an autonomous and objective world of perfect mathematical ideas. A more phys-
ical interpretation is the other way around, the ideas in our head—our perceptions—are
instances of physical laws, namely of objectively perfect, nonfunctional simultaneous de-
pendences.

The present idea that “grasping the solution of a problem” implies reduction under a
simultaneous dependence representing problem-solution interdependence, is parallel to an-
other statement of the theory of Forms: “To know the Form of X is to understand the nature
of X; so the philosopher who, for example, grasps the Form of justice, knows not merely
what acts are just, but also why they are just”.

Also Plato’s notion that the mind can access the objective perfection of the world of ideas,
while material objects are imperfect (a formulation of the mind-body problem) is reflected in
the present model, where perception is seen as the instantiation in the brain of an objectively
perfect physical law.

The present fundamental problem-solving mechanism matches in my judgement with:
(i) the Orchestrated Objective Reduction theory of consciousness of Hameroff and Penrose
[15]: it is a way of seeing problem-solving, specifically of a form relying on the non linearity
of reduction, in Objective Reduction, (ii) with the idea, also present in that theory, that
the very existence of consciousness depends on our capability of accessing the Platonic
world of objectively perfect mathematical Ideas [19], and (iii) with Stapp’s idea [22] that
consciousness is incompatible with classical locality (here seen as two body interaction,
unable to process many things at the same time) and compatible with quantum non-locality
and reduction (here seen as many body interaction, or reduction under problem-solution
interdependence, capable of processing many things at the same time).

7 Conclusions

In the admission of their same authors, the quantum speed ups are still little understood. In
his 2001 paper [14], Grover states: “What is the reason that one would expect that a quantum
mechanical scheme could accomplish the search in O(

√
N) steps? It would be insightful to

have a simple two line argument for this without having to describe the details of the search
algorithm.” The answer provided in this work is summarized in the following points:

1. quantum computation is reduction on the solution of the problem under the relation rep-
resenting problem-solution interdependence;

2. the speed up is the reduction of the initial ignorance of the solution due to backdating, to
before running the algorithm, a time-symmetric part of the reduction on the solution; this
advanced knowledge of the solution reduces the size of the solution space to be explored
by the algorithm;
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3. correspondingly the quantum algorithm takes the time taken by a classical algorithm
that knows in advance 50% of the information acquired by reading the solution (i.e. by
measuring the content of the computer register at the end of the quantum algorithm).

In a situation where heuristics went ahead of theory, and run aground since a few years
now, a better understanding of the mechanism of the speed up might refuel theoretical re-
search.

The expounded mechanism could be used, by reverse engineering, for the search of new
quantum algorithms. For example, Grover’s algorithm could be obtained by symmetrizing
(for the exchange of all the possible ways of getting in advance 50% of the information
about the solution) a classical algorithm that does database search in a solution space of
quadratically reduced size. The fact that the speed up is the reduction of the size of the prob-
lem obtained by utilizing 50% of the information acquired by reading the solution, could
also be used to investigate which problems are liable of being solved with a quantum speed
up, the question of why the speed up is quadratic for unstructured problems, exponential for
a very limited class of structured problems, not others, etc.

From another standpoint, relational computation provides a unified vision of disparate
forms of computation. One goes from deterministic classical computation to nondetermin-
istic quantum computation by going from two body interaction to many body interaction,
and from this to the relational representation of quantum computation. Furthermore, being
the condensation of an entire computation process in a single interaction (many body or
quantum measurement), this form of computation can represent the information processing
standing at the basis of perception. It explains an essential feature of conscious perception,
the fact that we see so many things together at the same time in the so called “present”.
Taking into account many constraints at the same time is exactly what classical many body
interaction, or reduction of the forward evolution on the backward evolution, does; the phys-
ical counterpart of the introspective notion of “present” is correspondingly the instant of the
interaction in the classical case, the time interval spanned by backdated reduction in the
quantum case.
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